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Abstract. The fermionic oscillator defined by the algebraic relations cc∗ + c∗c = 1 and c2 = 0 admits
the homogeneous group O(2) as its invariance group. We show that the structure of the inhomogeneus
invariance group of this oscillator is a quantum group.

1 Introduction

Quantum field theory, which describes the ultimate be-
havior of elementary particles and fields in physics, funda-
mentally depends on the concepts of the bosonic oscillator
described by the algebraic relation

aa∗ − a∗a = 1 (1)

and the fermionic oscillator described by the algebraic re-
lations

cc∗ + c∗c = 1, (2)
c2 = 0. (3)

The algebra of the bosonic oscillator (1) is invariant un-
der the inhomogeneous symplectic group ISp(2, R) which
transforms a, a∗ and 1 into each other. The homogeneous
part of this group which just transforms a, a∗ into each
other is Sp(2, R) � SU(1, 1). For the fermionic oscillator
(2) we should like to remark the importance of the relation
c2 = 0. Fermions satisfy the Pauli exclusion principle; the
two identical fermions cannot occupy the same state. Thus
c2 = 0. The algebra (2) describes the simplest non-trivial
quantum mechanical system. In this sense it is most funda-
mental. Although the bosonic oscillator (1) has a classical
limit in which it reduces to the harmonic oscillator, the
fermionic oscillator (2) has no classical analogue. Thus a
thorough understanding of all its properties is important.
One important property of the algebra (2) is that it does
not admit a q-deformation [1–4]. Another property is that
although it is invariant under the orthogonal group O(2)
which transforms c and c∗ into each other there is no inho-
mogeneous classical Lie group which transforms c, c∗ and
1 into each other. In this paper we construct a quantum
group [5–8] which achieves this purpose. We show that the
structure of the inhomogeneous invariance group of the
fermionic oscillator is a quantum group, that is, the matrix

elements of the transformation matrix which transforms
c, c∗ and 1 into each other belong to a non-commutative
Hopf algebra [5–8] where the co-product is given by the
matrix product. We will develop the R-matrix formula-
tion of this quantum group and show that the operators
generating this quantum group have a two dimensional
representation, which we explicitly construct. The repre-
sentation matrices depend on five parameters. We finally
present a discussion of our results.

To show that the structure of the inhomogeneous in-
variance “group” of the fermionic oscillator is a quantum
group, we consider a 3×3 matrix A whose elements belong
to an algebra A. We form the column matrix

c =




c

c∗

1


 , (4)

and assume that the action of the matrix A on c is given
by

c
′
= A

•⊗ c (5)

We assume that the matrix A is of the form

A =




α β γ

β∗ α∗ γ∗

0 0 1


 , (6)

in accordance with the general form of inhomogeneous
transformations of c and c∗ so that the transformed
fermion algebra generators in (4) are explicitly given by

c
′
= α ⊗ c + β ⊗ c∗ + γ ⊗ 1, (7)

c∗′
= α∗ ⊗ c∗ + β∗ ⊗ c + γ∗ ⊗ 1. (8)

If α, β, γ are taken as complex numbers the invariance of
the fermion algebra (2) requires that α = β = 0, α = eiρ
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or γ = α = 0 , β = e−iρ giving the homogeneous group
O(2). If we assume that α, β, γ and their hermitian conju-
gates can form a non-commutative algebra, the conditions
that c

′
satisfies the relations (2) give rise to 12 (real) rela-

tions. It is known that when some non-linear completely
integrable systems are quantized the Lie group which de-
scribes the symmetries of the system has also to be quan-
tized to yield a Hopf algebra. We thus look for a Hopf
algebra structure for A. In order to accomplish this, these
12 relations must be supplemented by five additional re-
lations so that the 17 defining relations of the algebra A
are given by

αα∗ = α∗α, (9)
ββ∗ = β∗β, (10)

γγ∗ + γ∗γ = 1 − α∗α − β∗β, (11)
αβ = βα, (12)

αβ∗ = β∗α, (13)
γ2 = −αβ, (14)
αγ = −γα, (15)

αγ∗ = −γ∗α, (16)
βγ = −γβ, (17)

βγ∗ = −γ∗β, (18)

plus the hermitian conjugates of (12)–(18). Note that α,
α∗, β, β∗, 1 commute among themselves. For the special
case α = β = 0, γ, γ∗ and 1 satisfy the fermion algebra.
We find the Hopf algebra with the co-product given by
matrix multiplication

∆(A) =




∆(α) ∆(β) ∆(γ)
∆(β∗) ∆(α∗) ∆(γ∗)

0 0 1


 = A

•⊗ A, (19)

the co-unit given by the unit matrix

ε(A) = I, (20)

and the antipode given by

S(A) = δ−1




α∗ −β −α∗γ + βγ∗

−β∗ α −αγ∗ + β∗γ
0 0 1


 , (21)

where

δ = αα∗ − ββ∗ (22)

is a central element of the algebra.
The fermionic oscillator algebra (2) and (3) can be

written as a vector algebra

RC1C2=C2C1, (23)

where

C1C2 =




c2

cc∗

c

c∗c
(c∗)2

c∗

c

c∗

1




, C2C1 =




c2

c∗c
c

cc∗

(c∗)2

c∗

c

c∗

1




, (24)

and the 9 × 9 R-matrix is

R =




−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 1
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




. (25)

The invariance of (23) under the transformation (5) im-
plies that the matrix A satisfies

RA1A2 = A2A1R. (26)

Since the R-matrix satisfies the quantum Yang–Baxter
equation, the matrix A whose entries satisfy (9)–(18) de-
fines a quantum matrix group.

The only irreducible representation of the fermion al-
gebra (2) is two dimensional and can be written in terms
of the Pauli matrices:

c =
1
2
(σ1 + iσ2) = σ+,

c∗ =
1
2
(σ1 − iσ2) = σ−. (27)

The overall phase ρ can be identified with the familiar
SO(2) group acting on c by c → eiρc. Since for the special
case α = β = 0 representations of the algebra A given by
(9)–(18) must reduce to the representations of the fermion
algebra (2) we may deduce that, if representations of A de-
pend on a number of parameters which take special values
for the case α = β = 0, then A can only have a two di-
mensional irreducible representation. This representation
is given by

α = α3σ3,

β = β3σ3,

γ = γ+σ+ + γ−σ−, (28)

where the complex numbers α3, β3, γ+, γ− are chosen such
that (9)–(18) are satisfied;

|α3|2 + |β3|2 + |γ+|2 + |γ−|2 = 1,

γ+γ− + α3β3 = 0. (29)
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A particular parameterization is given by

α3 = ei(ρ+σ) cos θ cos ϕ,

β3 = ei(ρ−σ) sin θ sin ϕ,

γ+ = ei(ρ+τ) cos θ sin ϕ,

γ− = −ei(ρ−τ) sin θ cos ϕ. (30)

Thus the fermionic inhomogeneous orthogonal quantum
group FIO(2) depends on five angles. The fact that the
parameters are all angles as well as (11) shows that
FIO(2) is compact as compared to the bosonic invari-
ance group ISp(2) which has the same number of param-
eters but is non-compact. In contrast, the familiar inhomo-
geneous orthogonal group IO(2), which is the Euclidean
group in two dimensions, has three parameters.

In physics, symmetries are important. Fundamental
examples are the Lorentz invariance of special relativ-
ity and the rotational invariance of hydrogen atom. Until
the 1980’s it was thought that when a physical system is
quantized the classical group which describes the symme-
tries of the system remain intact. i.e. it remains a classical
group. When some non-linear, completely integrable sys-
tems were quantized in the 80’s it was discovered that
the group which describes the symmetries of the physi-
cal system has also to be quantized, namely the classical
group which acts on the classical system has to change into
a quantum group. In the simplest examples, the classical

matrix with commuting elements has to turn into a ma-
trix with non-commuting elements. Moreover the algebra
generated by these elements has to satisfy the axioms of a
Hopf algebra. The quantum groups discovered in this fash-
ion have the property that in some limit they reduce to
a classical group. A fermionic system, on the other hand,
does not have any classical analogue. By showing that the
“inhomogeneous invariance group” of the fermionic oscil-
lator is not a classical group but a quantum group, we have
remotivated the introduction of quantum groups into field
theory.
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